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Outline

 The rise and demand for efficient accelerators

 The memristor-based accelerator for A.I./Machine Learning

 Future opportunities: brain-inspired approaches and alternatives 
to quantum computing
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Microprocessors

Dedicated Hardware 

Data from Bob Brodersen, UC Berkeley, 2002

“The Cost of Flexibility in Systems on a Chip Design for Signal Processing Applications”

General Purpose CPUs

Highly Flexible

Special Purpose

Highly Efficient

Equivalent to 
>20 years  
performance 
gains from 
Moore’s Law 
& Dennard 
scaling!

HW accelerators – increased performance for special cases
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Unlike before, we work hard for limited performance gains

4Source: Hennessy and Patterson



Some Key Drivers for Specialization: Data Explosion & AI
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Structured data

40 petabytes

Walmart’s transaction

database (2017)

Human interaction data

4 petabytes a day

Per-day posting to Facebook 

across 2 billion users 

(2017)

2MB per active user

Digitization of analog reality

40,000 petabytes a day*

10m connected cars by 2020

Front camera

20MB / sec
Front ultrasonic sensors

10kB / sec
Infrared camera

20MB / sec

Side ultrasonic 

sensors

100kB / sec

Front, rear and 

top-view cameras

40MB / sec

Rear ultrasonic 

cameras

100kB / secRear radar sensors

100kB / sec

Crash sensors

100kB / sec

Front radar 

sensors

100kB / sec

* Driver assistance systems only

The world is 

replacing

programming with 

training



Motivating example: Autonomous/Assisted Driving
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- 4 TB/day per instrumented vehicle
- 1 PB/day for a 250-car fleet
- Not practical to move all data to the 

Data Center

Need all sorts of accelerators 
at the Edge!



But we need Billions of miles for safety
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Source: RAND Corp.” Driving to Safety”

Need for accelerators in 
the Data Center!

Safe, autonomous vehicles 
depend on billions of miles 

of simulated driving

Source: Cognata



Conventional accelerators
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GPUs

Data parallel calculations

Deep Learning Accelerators

ASIC-like flexible performance

– Data-flow inspired, systolic, spatial

– Cost optimized

– Example: Google’s TPU, FPGAs

– Optimized for throughput

– High-bandwidth memory

– Example: Nvidia, AMD

CPU extensions

ISA-level acceleration

– Vector and matrix extensions

– Reduced precision

– Example: ARM SVE2



Unconventional accelerators
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Analog neuromorphic computing 

Massive speedup for AI training and inference

Optical Computing

Designed for “unsolvable” optimization problems

– Harnessing the properties of light at the microscale

– Prototype has world record

1,000 optical components

– Scalable to

100,000 components

– Complex matrix calculations in one step

– 10-100x faster

– 10-1000x more energy efficient
(Compared to GPU)



The memristor Dot Product Engine (DPE)

• Harness memristors in dense crossbar arrays

• Memristor = non-volatile, analog memory cell

• Parallel activation of every row and column in crossbar

• Vector-matrix multiplication (VMM) in a single cycle

• Computing = read operation

• Efficient multiply & add in analog domain

• Key advantage is in-memory processing

Ij= ∑i Gij
. Vi

Input 
Voltage 
vector

Output 
current 
vector

Vi



Chip image

Dot Product Engine: working prototype chip

20 nm memristors

Back-end (BEOL) 

integration of 

memristors with CMOS

Successful MNIST 

Neural Network 

inference with 

memristor-based 

analog computing



Image Processing on memristor-DPE system



System Architecture, Compiler, & Software Support

• Neural Network specification 
(ONNX) – CNN, LSTM, etc

Application Layer

• Convert to DPE Assembly; Map 
to crossbars

Compiler

• Provide performance metrics 
(accuracy, energy, latency, etc.)

Simulator

• Developed Architecture supporting all state-of-the-art neural networks (CNN, LSTM, MLPs, RBMs, etc.)

• Developed an “Assembly” code (ISA) for our memristor accelerator

• Built a compiler, with support for standard ONNX format

Architecture: PUMA – Programmable Ultra-efficient 

memristor-based Accelerator

10-100k memristor xbars (128x128) performing matrix 

vector multiplications

Digital units for other operations (logic, scalar, and 

vector units). 3-stage pipeline, instruction decoder, 

and instruction memory.



Inference energy normalized to PUMA (lower is better)
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Inference latency normalized to PUMA (lower is better)
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Future opportunities: 
brain-inspired approaches as 
alternative to quantum computing



M.D. Pickett, et al. Nature Materials 2013

Memristors also provide neuron-like behavior



Highly compact artificial neuron

Dark field cross-sectional TEM image of NbOx memristor RthCth ≤ 0.1 ns

Compared to brain:

500x frequency

100x less energy/spike

100 nm vs 100 µm



NP-hard and NP-complete problems: 

For a problem of size N, running time or 
memory use grows >> exp(N)

Important Graph Problems: 

“Set Cover” - applies to airline flight scheduling

“Traveling salesmen” – UPS, shipping

“Max-cut” – applies to VLSI layout, routing

Example : 

Every year, the National Football League (NFL) 
builds their 256-game schedule for the next season

 Have to consider team match-ups, stadium 
usage by other events, traffic, etc.

 Takes ~3months on a 1000-core system to solve!

*Source: Gurobi CEO Edward Rothberg

Apply to Important Optimization Problems



Optimization Accelerator: memristor- Hopfield Network

Traveling Salesman 
problem (TSP):

Synapses wij

Memristor DPE
Neurons si

Memristors with 
Non-Linear 
threshold

Find shortest route 
visiting all cities

E = −
1

2
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𝑗
𝑠𝑖,𝑗θ

Follows simple update rule: 𝑠𝑖,𝑗 =  
1 𝑖𝑓 𝑊𝑠′𝑖,𝑗 > θ

−1 𝑖𝑓 𝑊𝑠′𝑖,𝑗 < θ

Encode any TSP instance in the DPE xbar

Defines an “energy” of the system to be 

minimized

S Kumar, et al. Nature (2017)
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Optimization Accelerator: memristor- Hopfield Network

Synapses
Memristor DPE

Neurons
Memristors with 

Non-Linear 
threshold

S Kumar, et al. Nature (2017)

F. Cai, et al., manuscript in preparation
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–The computing world has become heterogeneous, there is no turning back

–Big opportunities to speed up applications with significant markets

–You can jump >20 years into the tech future with a special purpose accelerator

–Harness emerging devices to build new architectures

–But we also need software to rise to the challenge

• Can’t depend on hardware to keep up performance growth

–We must consider system balance (compute, memory bandwidth, cooling)

–We are kicking off a new Cambrian explosion, with plenty of extinctions coming 
– an exciting time to be designing computing systems!  

Summary



Thank you
labs.hpe.com

http://www.labs.hpe.com/
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