

Hewlett Packard Enterprise

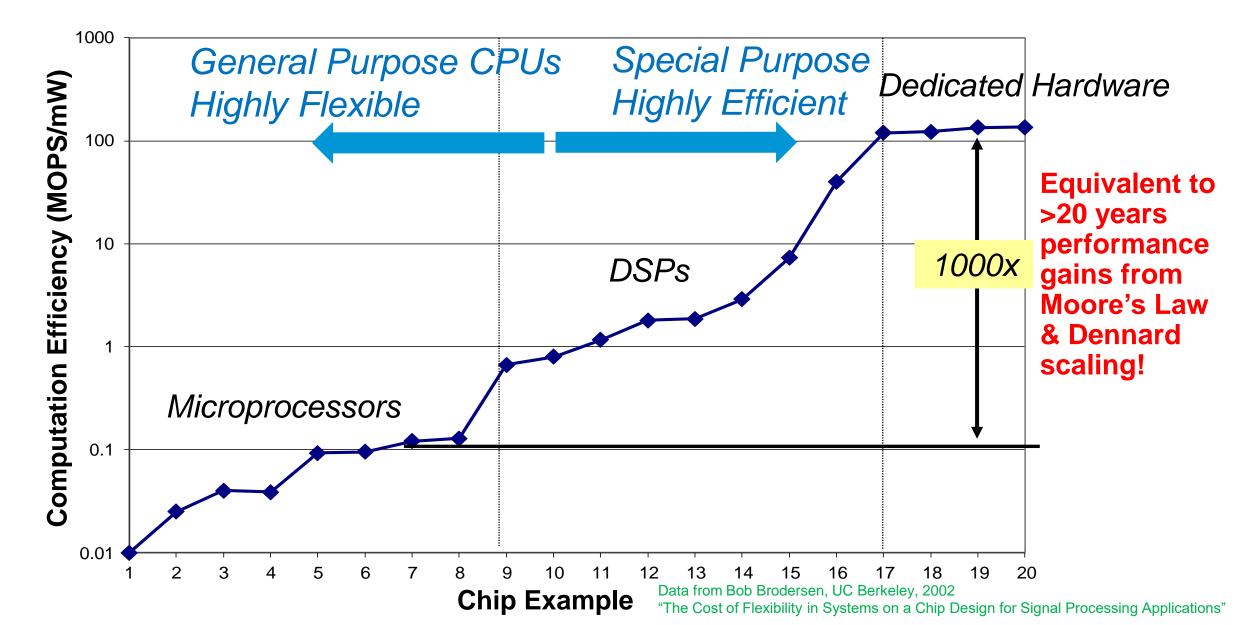
Future opportunities in high performance and low power computing with emerging technologies and novel architectures

John Paul Strachan Hewlett Packard Labs, HPE LETI Devices Workshop – December 2, 2018

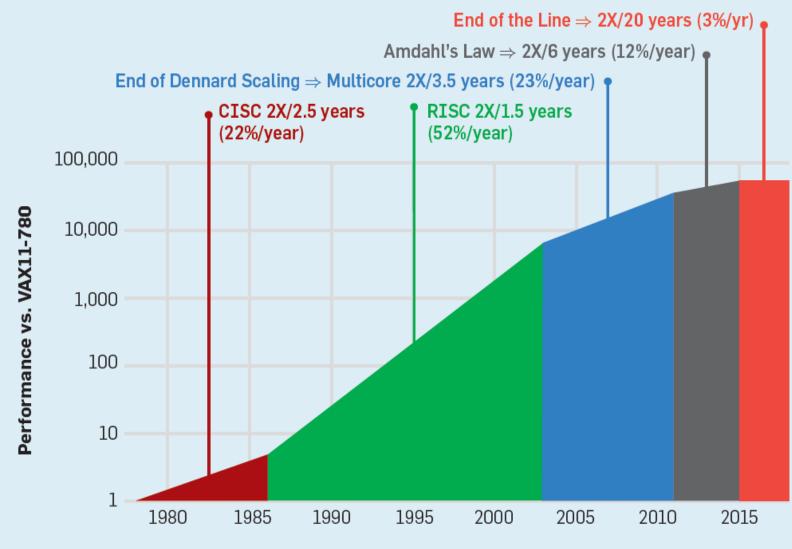
Outline

- The rise and demand for efficient accelerators
- > The memristor-based accelerator for A.I./Machine Learning
- Future opportunities: brain-inspired approaches and alternatives to quantum computing

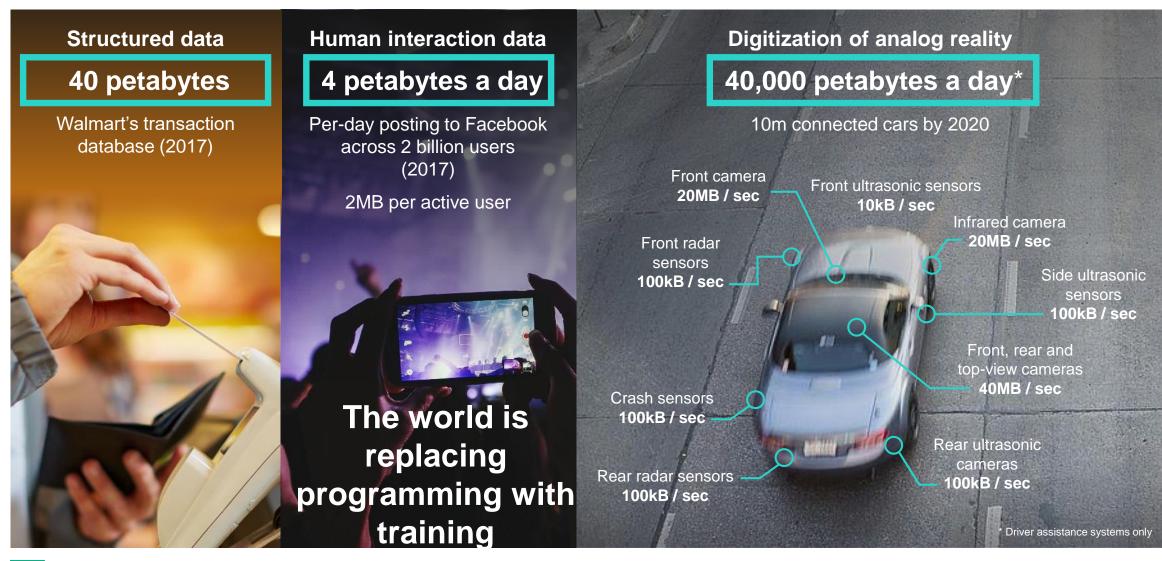
HW accelerators – increased performance for special cases



Unlike before, we work hard for limited performance gains

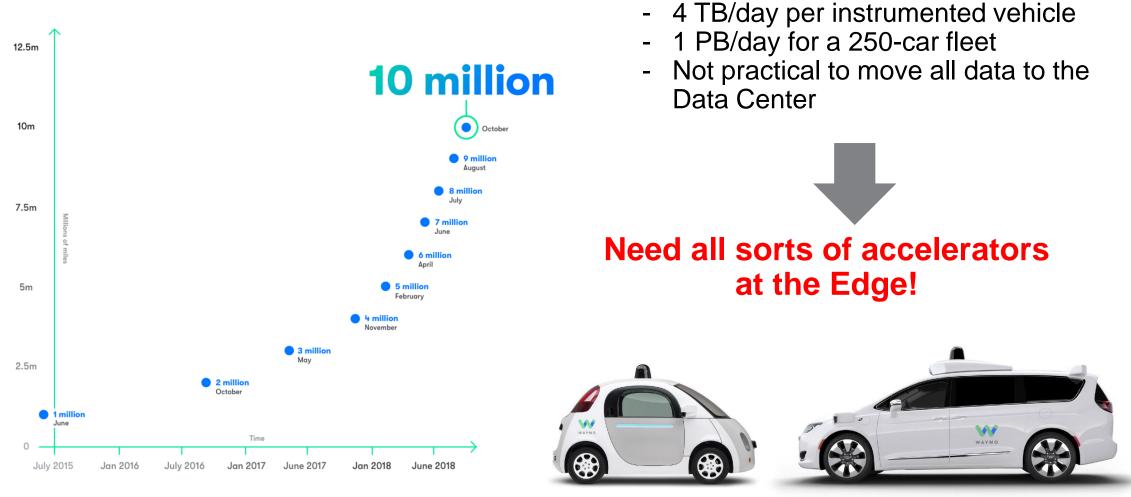


Some Key Drivers for Specialization: Data Explosion & Al



Hewlett Packard Enterprise

Motivating example: Autonomous/Assisted Driving



But we need Billions of miles for safety

How many miles (years^a) would autonomous vehicles have to be driven...

(1) without failure to demonstrate with 95% confidence that their failure rate is at most...

(2) to demonstrate with 95% confidence their failure rate to within 20% of the true rate of...

(3) to demonstrate with 95% confidence and80% power that their failure rate is 20% betterthan the human driver failure rate of...

(A) 1.09 fatalities per 100 million miles?

275 million miles (12.5 years)

8.8 billion miles (400 years)

11 billion miles (500 years)

Source: RAND Corp." Driving to Safety"

Safe, autonomous vehicles depend on billions of miles of <u>simulated</u> driving

Need for accelerators in the Data Center!

Conventional accelerators

CPU extensions ISA-level acceleration

- Vector and matrix extensions
- Reduced precision
- Example: ARM SVE2

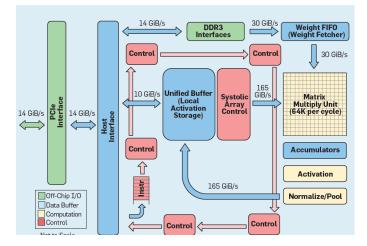
256-bit 128-bi x0 x1 x2 x3 x4 ... 8 laxpy ×4. whilelt p0.d. x4. 1d1d z2.d, p0/z, [x1,x4.lsl #3 1d1d p0/m. z1.d. z0.d fmla st1d p0, [x1,x4,lsl #3] incd latch whilelt b.first ret

GPUs Data parallel calculations

- Optimized for throughput
- High-bandwidth memory
- Example: Nvidia, AMD

Deep Learning Accelerators ASIC-like flexible performance

- Data-flow inspired, systolic, spatial
- Cost optimized
- Example: Google's TPU, FPGAs

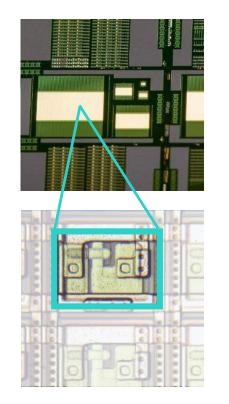


Unconventional accelerators

Analog neuromorphic computing

Massive speedup for AI training and inference

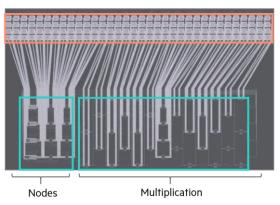
- Complex matrix calculations in one step
- 10-100x faster
- 10-1000x more energy efficient (Compared to GPU)



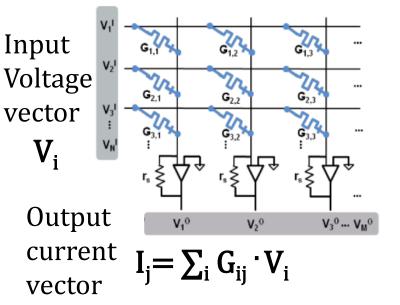
Optical Computing

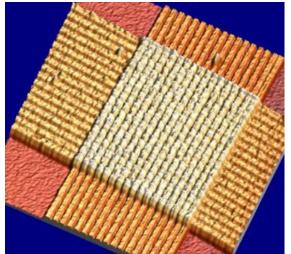
Designed for "unsolvable" optimization problems

- Harnessing the properties of light at the microscale
- Prototype has world record 1,000 optical components
- Scalable to 100,000 components



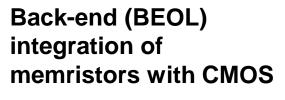
The memristor Dot Product Engine (DPE)

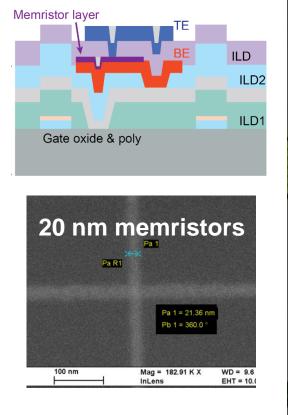


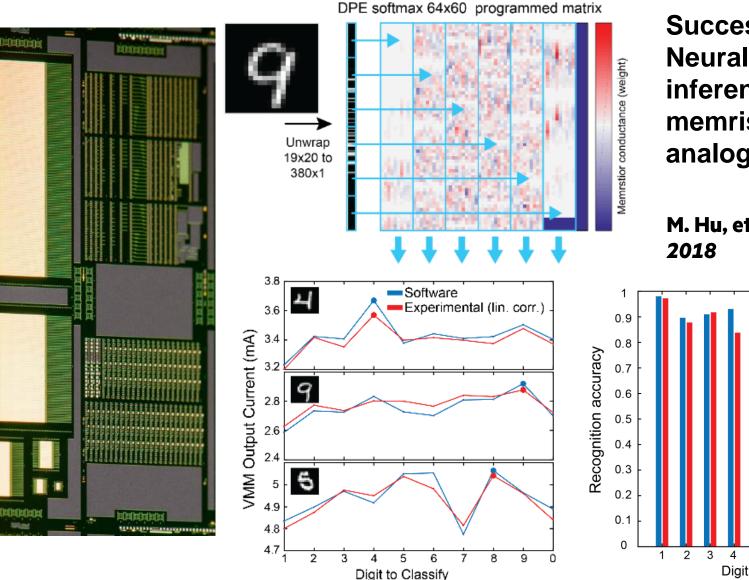


- Harness memristors in dense crossbar arrays
- Memristor = non-volatile, analog memory cell
- Parallel activation of every row and column in crossbar
- Vector-matrix multiplication (VMM) in a single cycle
- Computing = read operation
- Efficient multiply & add in analog domain
- Key advantage is <u>in-memory processing</u>

Dot Product Engine: working prototype chip

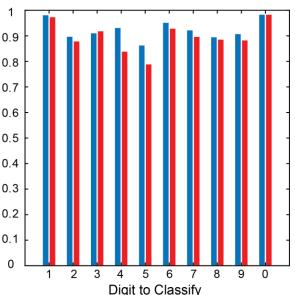


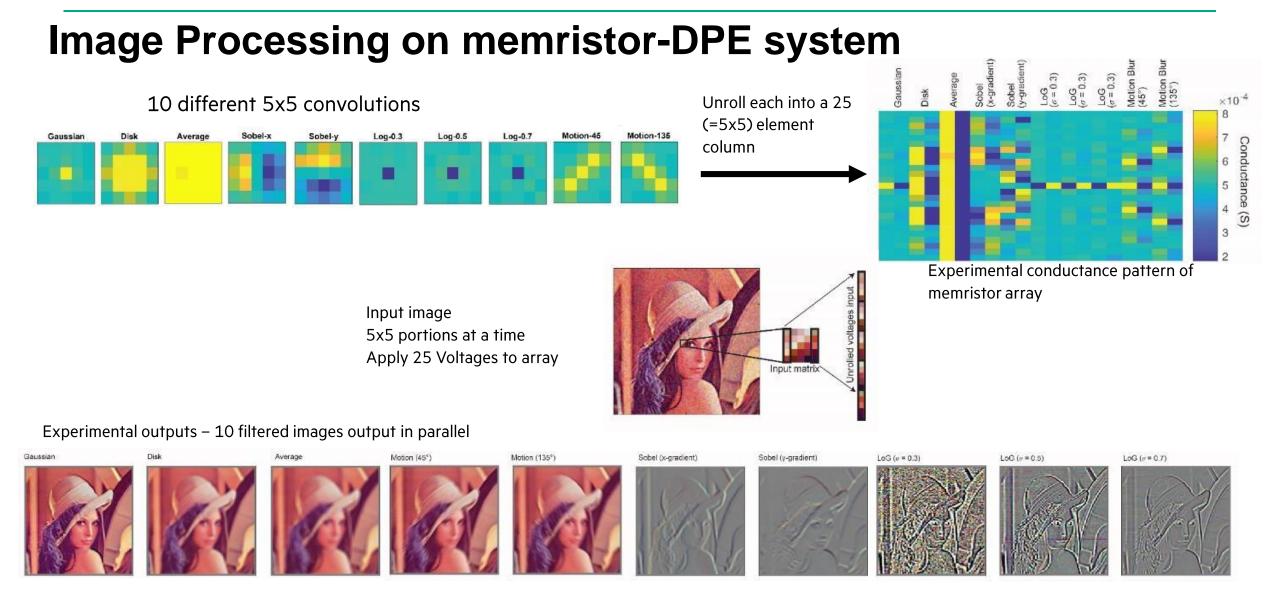




Successful MNIST Neural Network inference with memristor-based analog computing

M. Hu, et. al, Adv. Mater. 2018



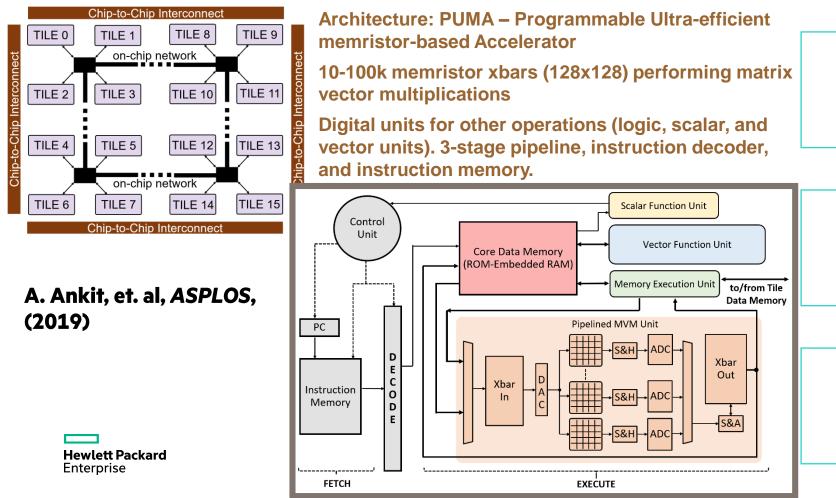


Reduces computations from $O(Cm^2n^2)$ operations to $O(n^2)$

C. Li, et. al, Nature Electronics, (2018)

System Architecture, Compiler, & Software Support

- Developed Architecture supporting all state-of-the-art neural networks (CNN, LSTM, MLPs, RBMs, etc.)
- Developed an "Assembly" code (ISA) for our memristor accelerator
- Built a compiler, with support for standard ONNX format



 Neural Network specification (ONNX) – CNN, LSTM, etc

Compiler

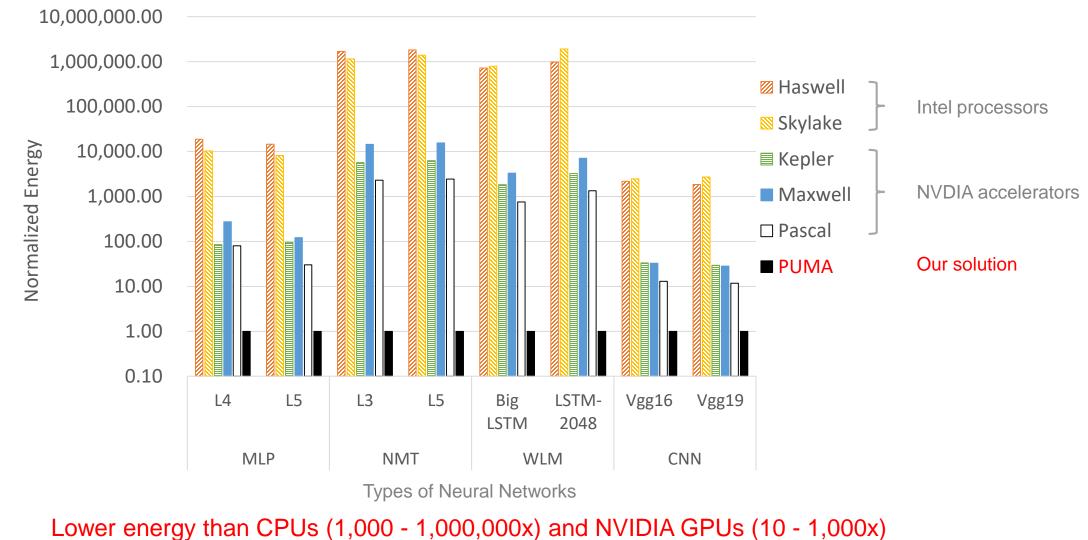
 Convert to DPE Assembly; Map to crossbars

Simulator

 Provide performance metrics (accuracy, energy, latency, etc.)

Benchmarking

Inference energy normalized to PUMA (lower is better)

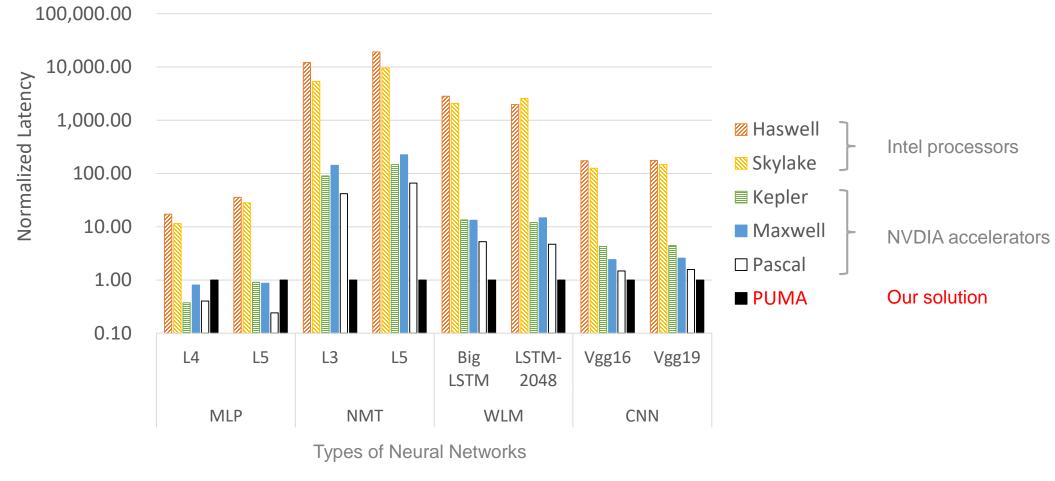


Larger networks (NMT, WLM) benefit the most

Hewlett Packard Enterprise

Benchmarking

Inference latency normalized to PUMA (lower is better)



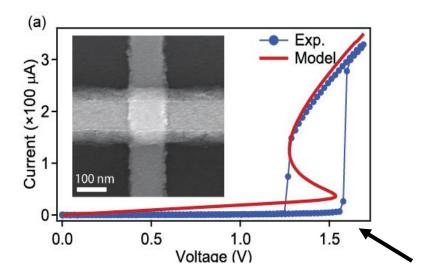
Lower latency than CPUs (10-10,000x) and NVIDIA GPUs (10-100x) Larger networks (NMT, WLM) benefit the most

Hewlett Packard Enterprise

Hewlett Packard Enterprise

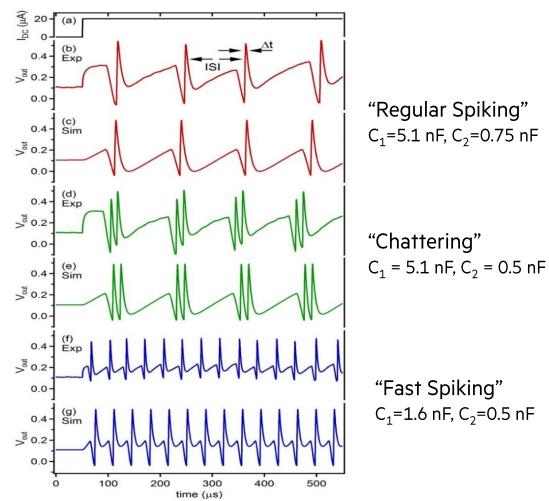
Future opportunities: brain-inspired approaches as alternative to quantum computing

Memristors also provide neuron-like behavior

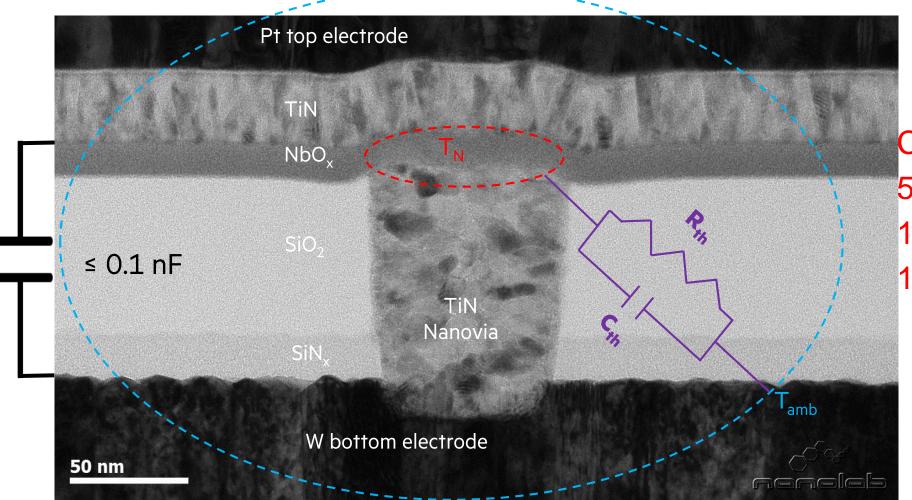


Can build a "neuronic" circuit element from a memristor (NbO₂ device shown here)

Directly emulates signals seen in brains



Highly compact artificial neuron



Compared to brain: 500x frequency 100x less energy/spike 100 nm vs 100 µm

 $\frac{1}{\frac{1}{Enterprise}} Dark field cross-sectional TEM image of NbO_x memristor <math>R_{th}C_{th} \le 0.1 \text{ ns}$

Apply to Important Optimization Problems

NP-hard and NP-complete problems:

For a problem of size N, running time or memory use grows >> exp(N)

Important Graph Problems:

"Set Cover" - applies to airline flight scheduling

"Traveling salesmen" – UPS, shipping

"Max-cut" – applies to VLSI layout, routing

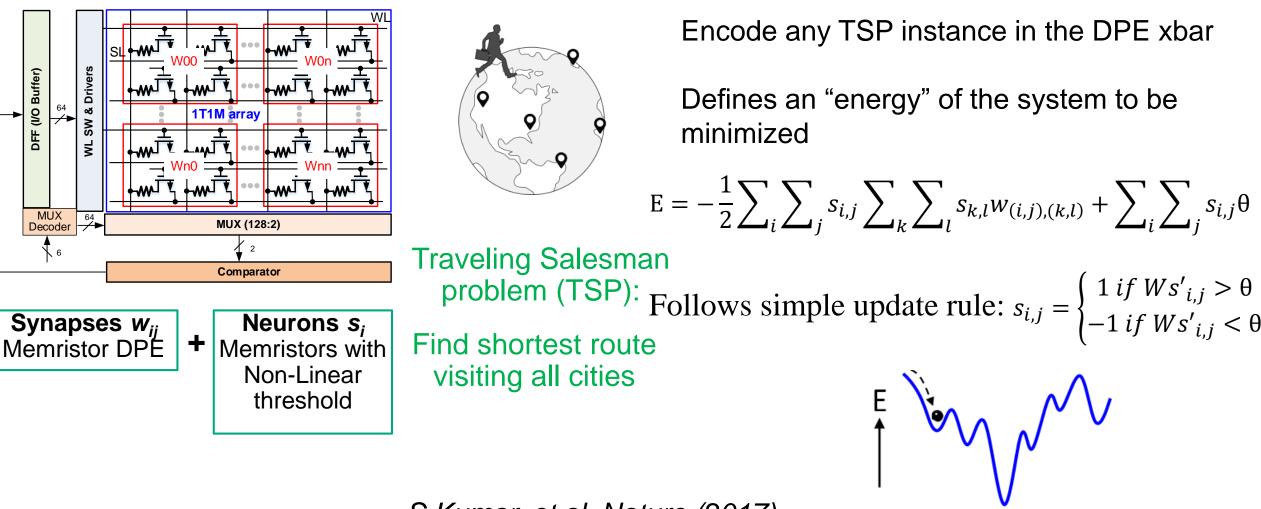
Example :

Every year, the National Football League (NFL) builds their 256-game schedule for the next season

- Have to consider team match-ups, stadium usage by other events, traffic, etc.
- Takes ~3months on a 1000-core system to solve!

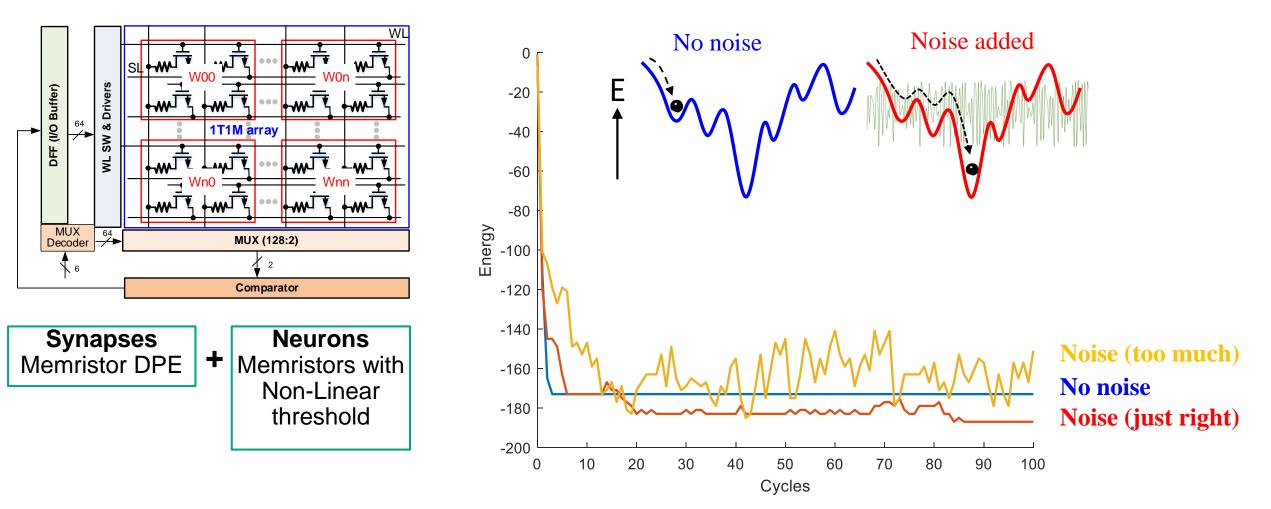
*Source: Gurobi CEO Edward Rothberg

Optimization Accelerator: memristor- Hopfield Network



S Kumar, et al. Nature (2017)

Optimization Accelerator: memristor- Hopfield Network



S Kumar, et al. Nature (2017) F. Cai, et al., manuscript in preparation

Summary

- -The computing world has become **heterogeneous**, there is no turning back
- -Big opportunities to speed up applications with significant markets
- -You can jump >20 years into the tech future with a special purpose accelerator
- -Harness emerging devices to build new architectures
- -But we also need software to rise to the challenge
 - Can't depend on hardware to keep up performance growth
- -We must consider system balance (compute, memory bandwidth, cooling)
- We are kicking off a new Cambrian explosion, with plenty of extinctions coming – an exciting time to be designing computing systems!

Thank you

65

abs.hpe.com

Acknowledgments

HPE Labs

Catherine Graves Suhas Kumar Miao Hu Xia Sheng Xuema Li Martin Foltin Dejan Milojicic Amit Sharma Fuxi Cai Rui Liu

University Collaborators

Jianhua Yang (UMass Amherst) Qiangfei Xia Can Li Aayush Ankit (Purdue) Kaushik Roy Izzat El Hajj (UIUC) Wen-Mei Hwu Wei Liu (U Michigan) Shimeng Yu (GeorgiaTech)

Program support

Karl Roenigk Jeffrey Weinschenk Richart Slusher Chad Meiners (Lincoln Lab) Chris Algire (NGA)

